Optimization of Random Subspace Ensemble for Bankruptcy Prediction

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Genetic Algorithm-Based Heterogeneous Random Subspace Ensemble Model for Bankruptcy Prediction

Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble techniques are known to be very useful in improving the generalization ability of a classifier. The random subspace ensemble technique is a simple but effective method of constructing ensemble classifiers, in which some features are randomly d...

متن کامل

Ensemble KNNs for Bankruptcy Prediction

The business failure has been widely researched, trying to identify the various determinants that can affect the existence of firms. However, the variety of models as well as the variety of the theoretical frameworks, illustrates the lack of consensus on how to understand the phenomenon and the difficulties in formulating a general model interpretation. One hotspot nowadays is the prediction of...

متن کامل

Ensemble with neural networks for bankruptcy prediction

0957-4174/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.eswa.2009.10.012 * Corresponding author. Tel.: +82 51 32

متن کامل

Feature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach

In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...

متن کامل

Feature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach

In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korea society of IT services

سال: 2015

ISSN: 1975-4256

DOI: 10.9716/kits.2015.14.4.121