Optimization of Random Subspace Ensemble for Bankruptcy Prediction
نویسندگان
چکیده
منابع مشابه
A Genetic Algorithm-Based Heterogeneous Random Subspace Ensemble Model for Bankruptcy Prediction
Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble techniques are known to be very useful in improving the generalization ability of a classifier. The random subspace ensemble technique is a simple but effective method of constructing ensemble classifiers, in which some features are randomly d...
متن کاملEnsemble KNNs for Bankruptcy Prediction
The business failure has been widely researched, trying to identify the various determinants that can affect the existence of firms. However, the variety of models as well as the variety of the theoretical frameworks, illustrates the lack of consensus on how to understand the phenomenon and the difficulties in formulating a general model interpretation. One hotspot nowadays is the prediction of...
متن کاملEnsemble with neural networks for bankruptcy prediction
0957-4174/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.eswa.2009.10.012 * Corresponding author. Tel.: +82 51 32
متن کاملFeature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach
In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...
متن کاملFeature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach
In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea society of IT services
سال: 2015
ISSN: 1975-4256
DOI: 10.9716/kits.2015.14.4.121